Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential
نویسندگان
چکیده
Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates.
منابع مشابه
Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers
In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...
متن کاملCritical Effects in Population Dynamics of Trapped Bose-Einstein Condensates
The population dynamics of a trapped Bose-Einstein condensate, subject to the action of an external field, is studied. This field produces a spatio-temporal modulation of the trapping potential with the frequency close to the transition frequency between the ground state and a higher energy level. For the evolution equations of fractional populations, a critical line is found. It is demonstrate...
متن کاملStability Analysis of a Matrix Converter Drive: Effects of Input Filter Type and the Voltage Fed to the Modulation Algorithm
The matrix converter instability can cause a substantial distortion in the input currents and voltages which leads to the malfunction of the converter. This paper deals with the effects of input filter type, grid inductance, voltage fed to the modulation algorithm and the synchronous rotating digital filter time constant on the stability and performance of the matrix converter. The studies are ...
متن کاملModulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart
Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...
متن کاملPii: S0960-0779(98)00020-4
We investigate spatio-temporal dynamics of two-wave mixing processes in a photorefractive medium, considering two different configurations. In the counterpropagating geometry, above a primary instability threshold we observe the onset of spontaneous spatial modulation of the Gaussian beam profile due to a static external electric field in the case of a self-focusing non-linearity. Running trans...
متن کامل